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Denote by B∗n the set of all k∗-cycle resonant hexagonal chains with n hexagons. For any
Bn ∈ B∗n , let m(Bn) and i(Bn) be the numbers of matchings (= the Hosoya index) and the
number of independent sets (= the Merrifield–Simmons index) of Bn, respectively. In this
paper, we give a characterization of the k∗-cycle resonant hexagonal chains, and show that
for any Bn ∈ B∗n, m(Hn) � m(Bn) and i(Hn) � i(Bn), where Hn is the helicene chain.
Moreover, equalities hold only if Bn = Hn.

KEY WORDS: k∗-cycle resonant hexagonal chain, helicene chain, Hosoya index, Merrifield–
Simmons index

1. Introduction

A hexagonal system is a 2-connected plane graph whose every interior face is
bounded by a regular hexagon. Hexagonal systems are of great importance for theo-
retical chemistry because they are the natural graph representation of benzenoid hydro-
carbons [1]. A considerable amount of research in mathematical chemistry has been
devoted to hexagonal systems [1–3]. A hexagonal chain with n hexagons is a hexag-
onal system consisting of n regular hexagons C1, C2, . . . , Cn with the properties that
(a) for any k, j with 1 � k < j � n − 1, Ck and Cj have a common edge if and
only if j = k + 1, and (b) each vertex belongs to at most two hexagons. Hexagonal
chains are the graph representation of an important subclass of benzenoid molecules,
namely, of the so-called unbranched catacondensed benzenoids. A great deal of mathe-
matical and mathematico-chemical results on hexagonal chains were obtained (see, for
example, [1–10]).

Let G = (V ,E) be a graph with vertex set V (G) and edge set E(G). Let e and
x be an edge and a vertex of G, respectively. We will denote by G − e or G − x

the graph obtained from G by removing e or x, respectively. Denote by Nx the set
{y ∈ V (G): xy ∈ E(G)} ∪ {x}. Let S be a subset of V (G). The subgraph of G induced
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(a) Ln (b) Zn (c) Hn

Figure 1.

by S is denoted by G[S], and G[V \ S] is denoted by G − S. Undefined concepts and
notations of graph theory are referred to [11,12].

Two edges of a graph G are said to be independent if they are not incident. A subset
M of E(G) is called a matching of G if any two edges of M are independent in G.
Denote by m(G) the number of matchings of G. In chemical terminology, m(G) is
called the Hosoya index.

Two vertices of a graph G are said to be independent if they are not adjacent.
A subset I of V (G) is called an independent set of G if any two vertices of I are
independent. Denote i(G) the number of independent sets of G. In chemical termi-
nology, i(G) is called the Merrifield–Simmons index. Clearly, the Hosoya index or the
Merrifield–Simmons index of a graph is larger than that of its proper subgraphs.

We denote by Bn the set of the hexagonal chains with n hexagons. Let Bn ∈ Bn.
We denote by V3 = V3(Bn) the set of the vertices with degree 3 in Bn. Thus, the
subgraph Bn[V3] is a acyclic graph. If the subgraph Bn[V3] is a matching with n − 1
edges, then Bn is called a linear chain and denoted by Ln. If the subgraph Bn[V3] is
a path, then Bn is called a zig-zag chain and denoted by Zn. If the subgraph Bn[V3]
is a comb, then Bn is called a helicene chain and denoted by Hn. Figure 1(a), (b), and (c)
illustrates Ln, Zn and Hn, respectively, where Bn[V3] are indicated by heavy edges.

Note that the considered hexagonal chains include both geometrically planar (e.g.,
Ln and Zn) and geometrically non-planar (e.g., Hn) species. It is easy to see that B1 =
{L1 = Z1 = H1}, B2 = {L2 = Z2 = H2} and B3 = {L3, Z3 = H3}. Let Bn ∈ Bn and
label its hexagons consecutively by C1, C2, . . . , Cn. Thus, the hexagons C1 and Cn are
terminal and for j = 1, 2, . . . , n − 1, the hexagons Cj and Cj+1 have a common edge.
We also denote Bn by C1C2 . . . Cn.

In the topological theory of unbranched catacondensed hydrocarbons, mathemat-
ical chemists are interested in investigating extremal hexagonal chains with respect
to some topological indices, such as the number of Kekulé structures, Wiener index,
Hosoya index, Merrifield–Simmons index, graph eigenvalue and total π -electron en-
ergy (the total absolute values of eigenvalues of a graph) etc. [3,4,7,8,13–23]. Those
topological indices of molecular graphs are of great importance in theoretical chem-
istry [14,16,24]. Among hexagonal chains with extremal properties on topological in-
dices, Ln, Zn and Hn play important roles. We list some of them in theorems 1.1–1.4.
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Theorem 1.1 (Gutman [4], Zhang [7]). For any n � 1 and any Bn ∈ Bn, if Bn is neither
Ln nor Zn, then

m(Ln) < m(Bn) < m(Zn).

Theorem 1.2 (Gutman [4], Zhang [7]). For any n � 1 and any Bn ∈ Bn, if Bn is neither
Ln nor Zn, then

i(Zn) < i(Bn) < i(Ln).

Theorem 1.3 (Gutman [4], Zhang and Tian [8]). Denote by λ1(G) the largest eigenvalue
of a graph G. Then for any n � 1 and any Bn ∈ Bn, if Bn is neither Ln nor Hn, then

λ1(Ln) < λ1(Bn) < λ1(Hn).

Theorem 1.4 (Zhang et al. [9,10]). Denote by π(G) the total π -electron energy of a
molecular graph G. Then for any n � 1 and any Bn ∈ Bn, if Bn is neither Ln nor Zn,
then

π(Ln) < π(Bn) < π(Zn).

Let M be a perfect matching of G. A cycle C in G is an M-alternating cycle if
edges of C belongs to M and does not belong to M alternatively. A number of disjoint
cycles in a graph G are mutually resonant if there is a perfect matching M of G such that
each cycle is an M-alternating cycle. A connected graph G with perfect matching is said
to be k-cycle resonant if G contains at least k (� 1) disjoint cycles, and any t disjoint
cycles in G, 1 � t � k, are mutually resonant. The concept of k-cycle resonant graph
was introduced by Guo and Zhang [25]. It is a generalization of k-coverable hexagonal
system induced by Zheng [26].

A graph G is called k∗-cycle resonant if G is k-cycle resonant and k is the max-
imum number of disjoint cycles in G. Denote by B∗n the set of all k∗-cycle resonant
hexagonal chains with n hexagons.

In this paper, we give a characterization of the k∗-cycle resonant hexagonal chains,
and show that for any Bn ∈ B∗n, m(Hn) � m(Bn) and i(Hn) � i(Bn), where Hn is the
helicene chain. Moreover, equalities hold only if Bn = Hn.

2. k∗-cycle resonant hexagonal chains

Any element Bn of Bn can be obtained from an appropriately chosen graph
Bn−1 ∈ Bn−1 by attaching to it a new hexagon. Let B be a hexagonal chain, C a
hexagon and rs an edge of C. It is easy to see that there are three types of attach-
ing: (i) r ≡ a, s ≡ b; (ii) r ≡ b, s ≡ c and (iii) r ≡ c, s ≡ d as shown in figure 2. We
call them α-type, β-type and γ -type attaching, respectively. Following [4], we denote
by [B]θ the hexagonal chain obtained from B by θ-type attaching to it a new hexagon C,
where θ ∈ {α, β, γ }.
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Figure 2.

Obviously, each Bn with n � 2 can be written as [. . . [[[L2]θ2 ]θ3] . . .]θn−1 , where
θj ∈ {α, β, γ }. We set Bn = βθ2θ3 . . . θn−1 for short.

For each j , if θj = β then Bn = Ln; if θj ∈ {α, γ } and θj 
= θj+1, then Bn = Zn;
and if θj = α (or γ ) then Bn = Hn.

Set

θ =




γ if θ = α,

β if θ = β,

α if θ = γ.

Obviously, the hexagonal chain Bn = βθ2θ3 . . . θn−1 is isomorphic to the hexagonal
chain Bn = βθ 2θ 3 . . . θn−1.

In [25], Guo and Zhang give some necessary and sufficient conditions for a graph
to be k-cycle resonant. We mention the following results which will be useful for our
results.

Theorem 2.1 (Guo and Zhang [25]). A connected graph with at least k disjoint cycles
is k-cycle resonant if and only if G is bipartite and, for 1 � t � k and any t disjoint
cycles W1,W2, . . . ,Wt in G, G−⋃t

j=1 Wj contains no component of odd order.

Theorem 2.2 (Guo and Zhang [25]). Every 2-cycle resonant hexagonal system is
k∗-cycle resonant, where k is the maximum number of disjoint cycles in the hexago-
nal system.
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By theorems 2.1 and 2.2, we can show that

Theorem 2.3. A hexagonal chain Bn (n � 3) belongs to B∗n if and only if Bn =
C1C2 . . . Cn = βθ2θ3 . . . θn−1, where θj ∈ {α, γ }, 2 � j � n− 1.

Proof. First, notice that each hexagonal chain is bipartite. Suppose that Bn =
βθ2θ3 . . . θn−1 belongs to B∗n. If there is some j, 2 � j � n − 1, such that θj = β,
then it is easy to see that Bn−Cj−1−Cj+1 contains two components of order one. This
contradicts that Bn is k∗-cycle resonant.

Now, suppose that Bn = βθ2θ3 . . . θn−1 is a hexagonal chain with θj ∈ {α, γ },
2 � j � n − 1. First, we show that Bn is 2-cycle resonant. Let C be any cycle of Bn.
Obviously, Bn − C contains no component of odd order. Let C,C ′ be any two disjoint
cycles of Bn, and let Bn(C) and Bn(C

′) be the sub-chains of Bn whose boundary are C

and C ′, respectively. Assume that Bn(C) = CiCi+1 . . . Cj and Bn(C
′) = CkCk+1 . . . Cl ,

1 � i � j � k − 2 � l − 2 � n − 2. It is easy to see that in this case, Bn − C − C ′
contains three components of orders 4(i−1), 4(k−j−2)+2 and 4(n− l), respectively.
Thus, by theorem 2.1, Bn is 2-cycle resonant, and hence, Bn is k∗-cycle resonant by
theorem 2.2. �

By theorem 2.3, every element Bn of B∗n can be written as Bn = βθ2θ3 . . . θn−1 with
θj ∈ {α, γ }, 2 � j � n− 1. Clearly, Hn and Zn are k∗-resonant.

Denote by K(G) the number of perfect matchings (in chemical terminology, it is
called the number of Kekulé structures) of G. In [4], Gutman pointed out that it is well
known that all fully-angularly annulated hexagonal chains (with a given n) have equal
and maximal K-value. Hence, by theorem 2.3, all k∗-cycle resonant hexagonal chains
have equal and maximal K-value. It is easy to see that the equal and maximal K-values
K(Bn), n = 1, 2, . . . , are Fibonacci numbers with the initial values K(B1) = 2 and
K(B2) = 3.

3. Extremal properties of Hn

Among many properties of m(G) and i(G) [16,24]; we mention the following
results which will be used later.

Claim 3.1. Let G be a graph consisting of two components G1 and G2. Then

(a) m(G) = m(G1)m(G2);

(b) i(G) = i(G1)i(G2).

Claim 3.2. Let G be a graph.

(a) Suppose uv ∈ E(G). Then m(G) = m(G− uv)+m(G− u− v).

(b) Suppose u ∈ V (G). Then i(G) = i(G− u)+ i(G− Nu).
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Figure 3.

Claim 3.3. Let G be a graph. For each uv ∈ E(G),

(a) m(G)−m(G− u)−m(G− u− v) � 0;

(b) i(G)− i(G− u)− i(G− u− v) � 0.

Moreover, equalities hold only if v is the unique neighbor of u.
Let Bn = C1C2 . . . Cn be a any given hexagonal chain. For each k, 1 � k � n−1,

we set Bk = C1C2 . . . Ck. We use sk−1, tk−1, ak, bk, ck and dk to label the vertices of Ck

such that sk−1tk−1 is the common edge of Ck−1 and Ck, and sk−1ak, akbk, bkck, ckdk and
dktk−1 are the edges of Ck. The case k = n is shown in figure 3.

By claims 3.1 and 3.2, we obtain the following recurrences:



m(Bn)

m(Bn − an)

m(Bn − bn)

m(Bn − cn)

m(Bn − dn)

m(Bn − an − bn)

m(Bn − cn − dn)



=




5 3 3 2
3 0 2 0
2 2 1 1
2 1 2 1
3 2 0 0
2 0 1 0
2 1 0 0







m(Bn−1)

m(Bn−1 − sn−1)

m(Bn−1 − tn−1)

m(Bn−1 − sn−1 − tn−1)


 (1)

and 


i(Bn)

i(Bn − an)

i(Bn − bn)

i(Bn − an − bn)

i(Bn − Nan)

i(Bn − Nbn)



=




3 2 2 1
3 0 2 0
2 2 1 1
2 0 1 0
0 2 0 1
1 0 1 0







i(Bn−1)

i(Bn−1 − sn−1)

i(Bn−1 − tn−1)

i(Bn−1 − sn−1 − tn−1)


 . (2)

To demonstrate how to obtain the above relations, we prove the first identity. By
applying claims 3.1(a) and 3.2(a) repeatedly we have

m(Bn)=m(Bn − sn−1an)+m(Bn − sn−1 − an)

=m(Bn − sn−1an − tn−1dn)+m(Bn − sn−1an − tn−1 − dn)

+m(Bn − sn−1 − an − tn−1dn)+m(Bn − sn−1 − an − tn−1 − dn)



W.C. Shiu et al. / Extremal k∗-cycle resonant hexagonal chains 23

=m(Bn−1)m(P4)+m(Bn−1 − tn−1)m(P3)

+m(Bn−1 − sn−1)m(P3)+m(Bn−1 − sn−1 − tn−1)m(P2)

= 5m(Bn−1)+ 3m(Bn−1 − tn−1)+ 3m(Bn−1 − sn−1)

+ 2m(Bn−1 − sn−1 − tn−1),

where Pm is the path with m vertices.

Lemma 3.1. For any Bn ∈ B∗n (n � 1) and {u, v} = {an, bn} (see figure 3), we have

(a) m(Bn)+m(Bn − u)− 2m(Bn − v)−m(Bn − u− v) > 0;

(b) i(Bn − u− v)+ i(Bn −Nu)− 2i(Bn −Nv) > 0.

Proof. Since m(B1) = 18, m(B1 − u) = 8, m(B1 − u − v) = 5, i(B1 − u − v) = 8
and i(B1 −Nu) = 5 = i(B1 −Nv), the lemma holds when n = 1. So we assume n � 2.

(a) Suppose that u = an and v = bn. By (1) we have

m(Bn)+m(Bn − an)− 2m(Bn − bn)−m(Bn − an − bn)

= 2m(Bn−1)−m(Bn−1 − sn−1)+ 2m(Bn−1 − tn−1).

Since Bn−1 − sn−1 is a proper subgraph of Bn−1, thus, m(Bn−1) > m(Bn−1 − sn−1), and
hence, m(Bn)+m(Bn − an)− 2m(Bn − bn)−m(Bn − an − bn) > 0.

Suppose that u = bn and v = an. By (1) we have

m(Bn)+m(Bn − bn)− 2m(Bn − an)−m(Bn − an − bn)

= −m(Bn−1)+ 5m(Bn−1 − sn−1)−m(Bn−1 − tn−1)+ 3m(Bn−1 − sn−1 − tn−1).

In order to prove that m(Bn)+m(Bn−bn)−2m(Bn−an)−m(Bn−an−bn) > 0,
it suffices to show that 5m(Bn−1 − sn−1) > m(Bn−1) and 3m(Bn−1 − sn−1 − tn−1) >

m(Bn−1 − tn−1).
Note that, since Bn is a k∗-cycle resonant hexagonal chain, we must have that either

sn−1 = an−1, tn−1 = bn−1 or sn−1 = cn−1, tn−1 = dn−1. Moreover, Bn−1 ∈ B∗n−1.
If sn−1 = an−1, tn−1 = bn−1, then by (1), we get that

5m(Bn−1 − sn−1)−m(Bn−1)

= 5m(Bn−1 − an−1)−m(Bn−1)

= 5
[
3m(Bn−2)+ 2m(Bn−2 − tn−2)

]

− [5m(Bn−2)+ 3m(Bn−2 − sn−2)+ 3m(Bn−2 − tn−2)+ 2m(Bn−2 − sn−2 − tn−2)
]

= 10m(Bn−2)− 3m(Bn−2 − sn−2)+ 7m(Bn−2 − tn−2)− 2m(Bn−2 − sn−2 − tn−2).

Since Bn−2−sn−2 and Bn−2−sn−2−tn−2 are the proper subgraphs of Bn−2 and Bn−2−tn−2,
respectively, we can get 5m(Bn−1 − sn−1)−m(Bn−1) > 0 in this case.

Similarly, we can show that 5m(Bn−1 − sn−1) > m(Bn−1) in the case sn−1 =
cn−1, tn−1 = dn−1, and that 3m(Bn−1 − sn−1 − tn−1) > m(Bn−1 − tn−1).
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(a) A∗ and B (b) Gγ (c) Gα

Figure 4.

(b) Similar to the proof of (a), by (2) we get

i(Bn)+ i(Bn −Nan)− 2i(Bn −Nbn)

= i(Bn−1)+ 4i(Bn−1 − sn−1)+ 2i(Bn−1 − sn−1 − tn−1),

and

i(Bn)+ i(Bn −Nbn)− 2i(Bn −Nan)

= 4i(Bn−1)+ 3i(Bn−1 − tn−1)− 2i(Bn−1 − sn−1)− i(Bn−1 − sn−1 − tn−1).

Notice that Bn−1 − sn−1 and Bn−1 − sn−1 − tn−1 are the proper subgraphs of Bn−1

and Bn−1 − sn−1, respectively. Therefore, i(Bn) + i(Bn − Nu) − 2i(Bn − Nv) > 0 for
{u, v} = {an, bn}. �

Let A∗ and B be two hexagonal chains, where A∗ is obtained from the hexagonal
chain A by attaching a hexagon H . The vertices of H are labeled a, b, c, d, q and p as
shown in figure 4(a). Let r and s be two adjacent vertices of B of degree two. Now, we
denote by Gγ the hexagonal chain obtained from A∗ and B by identifying c and r, and
d and s, respectively (figure 4(b)); and by Gα the hexagonal chain obtained from A∗, B
by identifying a and s, and b and r, respectively (figure 4(c)).

Lemma 3.2. Let A, B, Gγ and Gα be the k∗-cycle resonant hexagonal chains shown in
figure 4. We have

(a) if m(A− p) > m(A− q), then m(Gγ ) > m(Gα);

(b) if i(A− p) < i(A− q), then i(Gγ ) < i(Gα).

Proof. (a) By claims 3.1(a) and 3.2(a), we have the following:

m(Gγ )=
{
m(A)+m(A− p)

}{
m(B)+m(B − r)

}

+ {m(A− q)+m(A− p − q)
}{
m(B − s)+m(B − r − s)

}
+m(A)m(B)+m(A− q)m(B − s)

and

m(Gα)=
{
m(A)+m(A− q)

}{
m(B)+m(B − r)

}

+ {m(A− p)+m(A− p − q)
}{
m(B − s)+m(B − r − s)

}
+m(A)m(B)+m(A− p)m(B − s).
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Thus,

m(Gγ )−m(Gα)

= {m(A− p)−m(A− q)
}{
m(B)+m(B − r)− 2m(B − s)−m(B − r − s)

}
.

By lemma 3.1(a), m(B)+ m(B − r) − 2m(B − s) −m(B − r − s) > 0. Therefore, if
m(A− p) > m(A− q), then m(Gγ ) > m(Gα).

(b) By claims 3.1(b) and 3.2(b), we have the following:

i(Gγ )=
{
2i(A) + i(A− p)

}
i(B − r − s)+ {i(A)+ i(A− p)

}
i(B −Nr)

+ {2i(A− q)+ i(A− p − q)
}
i(B −Ns)

and

i(Gα)=
{
2i(A)+ i(A− q)

}
i(B − r − s)+ {i(A)+ i(A− q)

}
i(B − Nr)

+ {2i(A− p)+ i(A− p − q)
}
i(B −Ns).

Thus,

i(Gγ )− i(Gα) =
{
i(A− p)− i(A− q)

}{
i(B − r − s)+ i(B −Nr)− 2i(B −Ns)

}
.

By lemma 3.1(b), i(B − r − s) + i(B −Nr)− 2i(B − Ns) > 0. Hence, if i(A − p) <

i(A− q), then i(Gγ ) < i(Gα). �

Let Hn = C1C2 . . . Cn be a helicene chain. We label the common edge of C1 and
C2 as p1q1; and for each k, 2 � k � n, we label the vertices of V (Ck) − V (Ck−1) as
pk, qk, ck and dk such that pk−1pk, pkqk, qkck, ckdk and dkqk−1 are edges in Hn (see
figure 1(c)). In figure 3, if let Bn = Hn, Bn−1 = Hn−1, sn−1 = pn−1, tn−1 = qn−1, then
an = pn and bn = qn. By (1) and (2) we get




m(Hn)

m(Hn − pn)

m(Hn − qn)

m(Hn − pn − qn)


 =




5 3 3 2
3 0 2 0
2 2 1 1
2 0 1 0







m(Hn−1)

m(Hn−1 − pn−1)

m(Hn−1 − qn−1)

m(Hn−1 − pn−1 − qn−1)


 (3)

and 


i(Hn)

i(Hn − pn)

i(Hn − qn)

i(Hn − pn − qn)


 =




3 2 2 1
3 0 2 0
2 2 1 1
2 0 1 0







i(Hn−1)

i(Hn−1 − pn−1)

i(Hn−1 − qn−1)

i(Hn−1 − pn−1 − qn−1)


 . (4)

Let

1n = m(Hn)−m(Hn − pn)−m(Hn − pn − qn)

and

2n = i(Hn)− i(Hn − pn)− i(Hn − pn − qn).
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Lemma 3.3. For n � 1, we have

(a) 1n is a strictly increasing function of n;

(b) 2n is a strictly decreasing function of n.

Proof. (a) It is easy to see that 11 = 5 and 12 = 34.
By (3), we can get

1n = 3m(Hn−1 − pn−1)+ 2m(Hn−1 − pn−1 − qn−1).

For n � 3, we have

1n −1n−1 = 3
{
m(Hn−1 − pn−1)−m(Hn−2 − pn−2)

}

+ 2
{
m(Hn−1 − pn−1 − qn−1)−m(Hn−2 − pn−2 − qn−2)

}
.

Since Hn−2 − pn−2 and Hn−2 − pn−2 − qn−2 are the proper subgraphs of Hn−1 −
pn−1 and Hn−1 − pn−1 − qn−1, respectively, m(Hn−1 − pn−1) > m(Hn−2 − pn−2) and
m(Hn−1 − pn−1 − qn−1) > m(Hn−2 − pn−2 − qn−2). Therefore, 1n > 1n−1.

(b) It is easy to see that i(H1) = 18, i(H1 − p1) = 13 and i(H1 − p1 − q1) = 8.
Thus, 21 = −3, 22 = −10 and 23 = −190.

By (4), we get that

2n=−2i(Hn−1)+ 2i(Hn−1 − pn−1)− i(Hn−1 − qn−1)+ i(Hn−1 − pn−1 − qn−1)

=−6i(Hn−2 − pn−2)− 3i(Hn−2 − pn−2 − qn−2).

Thus, for n � 4, we have that

2n −2n−1 = 6
{
i(Hn−3 − pn−3)− i(Hn−2 − pn−2)

}

+ 3
{
i(Hn−3 − pn−3 − qn−3)− i(Hn−2 − pn−2 − qn−2)

}
.

Since Hn−3−pn−3 and Hn−3−pn−3−qn−3 are the proper subgraphs of Hn−2−pn−2

and Hn−2 − pn−2 − qn−2, respectively, we have that i(Hn−3 − pn−3) < i(Hn−2 − pn−2)

and i(Hn−3 − pn−3 − qn−3) < i(Hn−2 − pn−2 − qn−2). Therefore 2n < 2n−1. �

Lemma 3.4. Let Hn be a helicene chain. Then

(a) m(H1 − p1) = m(H1 − q1), and for each n � 2, m(Hn − pn) > m(Hn − qn).

(b) i(H1 − p1) = i(H1 − q1), and for each n � 2, i(Hn − pn) < i(Hn − qn).

Proof. It is easy to obtain that m(H1 − p1) − m(H1 − q1) = 0 and m(H2 − p2) −
m(H2 − q2) > 0. For n � 3, by (3) and (4) we have

m(Hn − pn)−m(Hn − qn)=m(Hn−1)−m(Hn−1 − pn−1)−m(Hn−1 − pn−1 − qn−1)

− {m(Hn−1 − pn−1)−m(Hn−1 − qn−1)
}

=1n−1 −
{
m(Hn−1 − pn−1)−m(Hn−1 − qn−1)

}

= (1n−1 −1n−2)+
{
m(Hn−2 − pn−2)−m(Hn−2 − qn−2)

}
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and

i(Hn − pn)− i(Hn − qn)=
{
i(Hn−1)− i(Hn−1 − pn−1)− i(Hn−1 − pn−1 − qn−1)

}

− {i(Hn−1 − pn−1)− i(Hn−1 − qn−1)
}

=2n−1 +
{
i(Hn−1 − qn−1)− i(Hn−1 − pn−1)

}

= (2n−1 −2n−2)+
{
i(Hn−2 − pn−2)− i(Hn−2 − qn−2)

}
.

By lemma 3.3(a), we have 1n−1 −1n−2 > 0. Hence, we get that for each n � 3,
m(Hn − pn) > m(Hn − qn).

Similarly, we can obtain i(H1−p1)−i(H1−q1) = 0 and i(H2−p2)−i(H2−q2) <

0. By lemma 3.3(b), we have 2n−1 − 2n−2 < 0. Hence, we get that for each n � 3,
i(Hn − pn) < i(Hn − qn). �

Theorem 3.5. For any n � 1 and any Bn ∈ B∗n, we have

(a) m(Hn) � m(Bn) � m(Zn);

(b) i(Hn) � i(Bn) � i(Zn),

with relevant equalities holding only if Bn = Hn, or only if Bn = Zn.

Proof. We only need to verify the first inequalities of (a) and (b) according to the-
orems 1.1 and 1.2. Let Bn ∈ B∗n be the hexagonal chain with the smallest number
of matchings (the largest number of independent sets, respectively). By theorem 2.3,
Bn ∈ B∗n can be written as Bn = βθ2θ3 . . . θn−1 with θj ∈ {α, γ }, 2 � j � n−1. Assume,
without loss of generality, that θ2 = α (otherwise, we consider Bn = βθ 2θ3 . . . θn−1).
Suppose that Bn 
= Hn. Since B∗1 = {H1}, B∗2 = {H2} and B∗3 = {H3}, we have that
n � 4. Let θj be the first element of θ2, θ3, . . . , θn−1 such that θj = γ . Thus, j � 3, and
Bn = βα . . . αγ θj+1 . . . θn−1.

Referring to figure 4, set Gγ = Bn = βα . . . αγ θj+1 . . . θn−1, A = βα . . . α =
Hj−1, p = pj−1 and q = qj−1. Let Gα = βα . . . ααθj+1 . . . θn−1.

By lemma 3.4(a) (lemma 3.4(b), respectively), we have m(A−p) > m(A−q) (and
(A − p) < i(A − q), respectively). By lemma 3.2(a) (lemma 3.2(b), respectively), we
have m(Bn) > m(Gα), (and (Bn) < i(Gα), respectively), which contradicts the choice
of Bn. The proof of theorem 3.5 is complete. �
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